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On the non-integrability of Yang-Mills potentials 
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Abstract. The non-integrability of three Hamiltonian systems obtained by simplifications 
of the Yang-Mills classical field theory is proved by application of two theorems of Yoshida. 
It is also shown that for the two four-degree of freedom systems there exists a set of three 
independent integrals of motion in involution. 

1. Introduction 

It is known (Matinyan et a1 1981, Asatryan and Savvidy 1983, Savvidy 1984) that the 
equations of motion of the SU(2)  Yang-Mills classical field theory, under the assump- 
tion that the potentials depend only on time and under a more restrictive ansatz, yield 
the classical system of equations 

( l a )  

(1b) 

( 2 )  

x = -xy 2 

j ;  = -yx 2 

HI = ; ( p : + p : ) + j x  1 2 2  y . 
hereafter named system A, which can be derived from the Hamiltonian 

In the above references, it is conjectured that system A is a strongly chaotic 
non-integrable system and this was confirmed by numerical investigation on this system 
by Carnegie and Percival (1984), where it was suggested that no regular regions of 
motion exist on the surface of section and the motion is always irregular, except for 
a measure zero set of unstable periodic orbits. In a recent paper, Villarroel (1988) 
obtained the classical system of four degrees of freedom by making a less restrictive 
ansatz on the potentials: 

x + g2w(xw - yz)  = 0 (3a)  

j ; - g2z (xw-yz )  = o  (3b) 
z - g  2 y ( x w - y z ) = O  

w + g * x ( x w - y z ) = o  

hereafter named system B, which can be derived from the Hamiltonian 

H2 = ;( d + P: + P? +Pi) + ( g 2 / 2 ) ( x w  - Y d 2  (4) 
where g is a coupling constant. 

An attempt to prove non-integrability of system B by the Lobatchewsky-Hadamard 
theorem was unsuccessful, since it provided a non-negative scalar curvature of the 
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corresponding local Riemannian manifold of the flow and non-integrability was then 
conjectured on the fact that the PainlevC analysis of this system provided a pair of 
complex resonances, indicating the presence of an algebraic branch point. 

An extension to the case of a SU(2) gauge system with spontaneous symmetry 
breaking yielded the system described by the Hamiltonian 

( 5 )  EZ3 =;( p z  + p $  + p i  + p i )  + ( g ’ / 2 ) ( ~ ~  -YZ)’+ (g’K’/4)(x2+ y 2  + Z’ + w’) 

hereafter called system C, where K is a constant parameter. This system is integrable 
in the limit K +CO and its periodic solutions were studied via perturbation theory by 
using the action-angle variables of the integrable part. 

In this paper, non-integrability of system A is proved by a direct application of a 
theorem by Yoshida (1987) in § 2. In § 3, the integrability properties of system B are 
investigated. By the application of two successive point transformations, it is shown 
that this system possesses two independent integrals of motion in involution, in addition 
to the Hamiltonian, which can be obtained as generalised momenta, conjugate to 
ignorable coordinates in the transformed system. By using these integrals, system B 
can be reduced to a system of two degrees of freedom with a non-homogeneous 
potential. Non-integrability of this latter system is then proved by application of 
another theorem of Yoshida (1988). Finally, in § 4 it is shown that non-integrability 
of system C can also be proved by exactly the same procedure. 

2. Non-integrability of system A 

Yoshida’s ( 1987) theorem, which can provide a sufficient condition for non-integrability 
for a two degrees of freedom Hamiltonian of the form 

H=f(P:+P:)+ V(q , ,q z )  (6) 

with a homogeneous potential V(q , ,  q2)  of degree k ( f . 0 ,  *2) has been proved by 
applying Ziglin’s theorem (Ziglin 1983a, b) to the straight-line solutions of system ( 6 )  
and, for the case k 3 3, it is stated as follows. 

Let c1, cz be a solution of the algebraic system of equations 

The quantity A, which is called the ‘integrability coefficient’, is defined by the equation 

If A lies in the non-integrability region 

S k  = { A  < 0 , 1  < A  < k -  1, k + 2 < A  < 3 k - 2 , .  . .} 
then no additional integral of motion for system (6) exists and consequently the system 
is non-integrable. 

By applying the above theorem to system A, we obtain c: = c: = 1 and A = -1 < 0, 
i.e. A E S, which proves that system A is non-integrable. 
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3. Integrals of motion and non-integrability for system B 

If we perform the following orthogonal point transformation from (x, y ,  z, w )  to 
(51 9 5 2  3 53 9 54) 

51 = 2-”’(x+ w )  

5 3  = 2 - 1 / 2 ( y  + 2) 

H2 = f( P:  + P:  + P: + P i )  + i g 2 (  5; - 5: + 5: - &2. 

5 2  = 2-”‘(x - w )  

t4 = 2-’/2(y - z) 

the Hamiltonian (4) of system B takes the form 

Then we transform to polar coordinates on the (&, &) and (t2, 
transformation 

t1 = rl cos el 
t3 = r ,  sin 8,  

e2 = r2 cos t12 

t4 = r2 sin (3’ 

so the Hamiltonian ( 9 )  becomes 

~2 = &p?,  +pt2 +p2S,rT2 +p2e2r;2) + ig ’ ( r :  - r:)2,  

( 9 )  
) planes by the point 

( 1 1 )  
The angles e,,  e2 are now ignorable coordinates, so the corresponding momenta 

are integrals of motion: 

PO, = 5351 - 5153 = constant = a 

P O ,  = 5 4 6 2  - 5 2 5 4  = constant = b. 
( 1 2 )  

By going back to the initial set of coordinates ( x ,  y ,  z, w ) ,  we may rewrite the two 
integrals as follows: 

II =Pe,+Pe, = ( x y  - X y ) +  ( w i  - zW) =constant = C,  

1 2 = ~ e ,  -Pe,  = ( x i  -Xz) + ( w j  -yW) =constant = C2 
(13) 

which are two independent additional integrals of motion for system B. It is easy to 
check that [II, I*] = 0, so the integrals Il and 1’ are in involution. 

In Villarroel (1988) ,  the value of C,  has been selected equal to zero and the 
corresponding relation: 

11 = Pe, +Pe, = 0 (14) 
represented Gauss’ law for the initial Yang-Mills system and was treated as a non- 
holonomous constraint. Since Il is an integral of motion of system B, Gauss’ law 
corresponds to a fixed value of the constant C ,  and is fulfilled on the corresponding 
level surface in the phase space of the system. 

Now, by using the integrals of motion ( 1 2 ) ,  we are able to make a reduction to a 
two degrees of freedom system 

( 1 5 )  H i  = f ( P $  + P:+ a 2 X - 2 +  b2 Y-2) +Qg2(X’-  Y2)2 

where X and Y stand for r I  and r 2 ,  respectively, and a and b are arbitrary constant 
parameters. If a solution of ( 1 5 )  is known, the corresponding solution for the original 
four degrees of freedom system can be completed by integrating the relations 

6 ,  = arT2 

8, = brL2. 
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If, moreover, non-integrability is proved for the reduced system, even for some 
particular value of an integral of motion, then it is obvious that the complete four 
degrees of freedom system is non-integrable. If we select in ( 1 9 ,  a = 0, then H i  becomes 

H;=;(P::+P:)+ V * ( X ,  Y ) .  (16) 

V" = Vm2+ v, (17)  

The corresponding potential V" is of the form 

where 

V-, = b2 Y-2 /2  

and 

v4 = i g2 (  x 2  - Y2)2 

are homogeneous functions of degree -2 and 4, respectively. 
The theorem of Yoshida (1988) we are now going to apply is stated as follows. 
Consider the Hamiltonian 

H = f ( p : + p : ) +  V ( q , , q 2 )  (18) 

with a non-homogeneous potential V ,  which can be written as a finite sum of 
homogeneous parts v k  : 

v = c  vk(qI3 q 2 )  
k 

and assume that q 1  = 0 is a straight-line solution of the system, i.e. 

d V / d q ,  = 0 for q, = 0. 

Let hk,,,, hkmax be the integrability coefficients along the above solution for the 
lowest and highest parts v k m , ,  , vkmax, respectively, and let Sk,,", Sk,,, be the correspond- 
ing non-integrability regions. If either hk,,, E s k m , ,  or hk,,, E s k m a x  holds, then no addi- 
tional integral for system (18) can exist and the system is non-integrable. 

Note that d V * / d X  = 0 for X = 0, so for system (18) the desired straight-line solution 
does exist. The integrability coefficient h4 of the fourth-degree part can be found as 
described in 0 2 and is A ,  = -1. According to Yoshida's theorem, since h 4 €  S , ,  non- 
integrability of (16), and subsequently of system B, has been proved. 

4. Non-integrability of system C 

Non-integrability of this system can be proved by following exactly the same steps as 
with system B. By performing the transformations (8) and (lo), the Hamiltonian ( 5 )  
takes the form 

H3 = ;( pj, +p:2+p2,,r;2+p2,,r;2) +$g2K2( r:+ r:)  +Qg2(  r: - r : y .  (19) 

Again 1, and I2 (or pel and pe2)  are independent integrals of motion in involution 
and the reduced two-dimensional system, for p e l  = 0, ps,  = b, takes the form 

H f = ; ( P : , + P : ) +  V"(X,  Y ) .  

V" = v-,+ v2+ v, 
The corresponding potential is 



O n  non-integrability of Y M  potentials 3465 

where V-,  and V, are as in the preceding section, while 

v2 =ig2KZ(X2+ Y2). 

The straight-line solution X = 0 still exists and non-integrability of V, suffices for 
the non-integrability of system C. 

5. Conclusions 

The non-integrability of three Hamiltonian systems which represent simplified versions 
of the equations of the SU(2) Yang-Mills classical field theory is proved by making 
use of two theorems by Yoshida. 

Moreover, it is shown that, in two of these systems with four degrees of freedom, 
two additional angular momentum-like integrals exist which form, with the Hamiltonian 
of the system, a set of three independent integrals in involution. These are not sufficient, 
however, for Liouville integrability and the above systems are non-integrable. 
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